CAST OF CHARACTERS

I'm Jazzy!

I'm Pops!

I'm Miss Georgia!

I'm Dr. Cook! Call me Doc!

I'm Jazzy!
Hey, Miss Georgia!
Hi, Jazzy! Nice day for a walk outside!
Hey, Pops! It’s good to see you.

It’s good to see you too. I’ve been meaning to wish you a happy birthday!
Let's take a rest at these tables. We can spread out and take off our masks.
So... Happy Birthday, Jazzy!

Thanks! Some of my friends video called me, which was nice!

But I still missed having a party with them in person, like we always do!

I'm tired of things being different!
I know, I'm tired of these COVID-19 restrictions too. It's hard distancing from people and wearing masks.

But, it's important to keep everyone safe.

I know. You're right.

Hey, what about the COVID-19 vaccine I keep hearing about? Won't we be able to stop doing these things after we all get vaccinated?
Yes, it's great that we have vaccines now to protect us against COVID-19.

Vaccines will gradually lower the number of people with COVID-19. When the number of cases is very, very low, we can get back to normal.

Until then, even with the vaccine, we still need to social distance and wear masks.
I would love for things to go back to normal, but I'm not sure I want to get a COVID-19 vaccine.

They made it so quickly, so how can we be sure it's safe?
It's good to be skeptical. And it's true that many vaccines have taken 10–15 years to develop.

But, scientists have made vaccines quickly in the past. The mumps vaccine in the 1960s only took about four years.

Oh, my baby cousin just got her MMR vaccine! I found out that's a vaccine for measles, mumps, and rubella!
As for the COVID-19 vaccines... part of the fast development was how serious the pandemic is. Lots of money has been available for research!

But normal testing and review was still followed to make sure they're safe and work well!

VACCINE TESTING AND REVIEW STEPS

1. **The company making the vaccine tests and reviews it in phases...** from test tubes, to lab animals, to small groups of people, to large groups of people.

2. **The Food and Drug Administration (FDA) reviews all the test results.**

3. **An independent panel reviews all the test results and makes its report public.**
Well, that makes me feel a little better. They tested and reviewed all the COVID-19 vaccines?

Yeah, all the new vaccines went through those safety checks.

Wait, you said “all the new vaccines.” There’s more than one? What’s the difference?
The first COVID-19 vaccines to be approved use mRNA, which is a new way to make vaccines.

Scientists were working on the idea of mRNA vaccines way before the pandemic started.

mRNA has already been used for years to fight cancer and other diseases.
Is mRNA like DNA?
It sounds like it. We learned about DNA in school.

mRNA is kinda like DNA!
Think of DNA as a master cookbook with lots of *recipes for proteins.

mRNA is like a copy of one recipe. The recipe goes to a **chef that follows the recipe to make a protein.

*RECIPES = GENES
** CHEF = RIBOSOMES

mRNA MOVES TO RIBOSOMES

DNA STAYS IN CELL NUCLEUS
Exactly! Those proteins are what let the virus attach to your cells.

Protein? Didn't I hear that a protein sticks out all over the coronavirus?

Those spiky looking things in the pictures?
The mRNA in COVID-19 vaccines tells your body how to make that spike protein. You could say the mRNA vaccines contain the recipe for the spike protein! Exactly! After you get the vaccine, your body starts making the spike protein. This protein doesn't cause disease like the full coronavirus does.
But the spike protein something foreign, so, your immune system attacks it!

And your immune system gets trained to recognize and fight the real coronavirus!

We better learn to fight you!

We’re ready!

We already know you!

When vaccine is given

Coronavirus with spike protein

When coronavirus enters body

Spike protein coronavirus with spike protein

Immune system attacks it!
No. mRNA can't affect your DNA. Your DNA is always safe inside the nucleus of each cell. The mRNA from the vaccine doesn't go in there.

Also, the vaccine mRNA is only in your body a short time. It makes the spike protein and then quickly breaks down.

Hmm. I don't know. Can this mRNA affect my DNA somehow?

Fun fact: mRNA vaccines need to stay cold to keep the mRNA from breaking down.
DNA and RNA are both molecules called **nucleic acids**. mRNA is a type of RNA involved in making proteins.

Nucleic acids are long chains of nucleotides.

The order of the nucleotides in a given DNA or RNA molecule codes for different proteins, like the proteins on the outside of viruses.
Ok. So, I see that the mRNA vaccine is well-tested and safe. And the mRNA in it is the “recipe” for the spike protein on the outside of the coronavirus.
People are developing some other COVID-19 vaccines that use weakened viruses to train your immune system to fight the coronavirus.

That method is more traditional than the mRNA type.

We better learn to fight you!

We're ready!
I'm almost ready to get the vaccine. But is it really important for me to get it? Isn't it enough if other people get it?
Are you talking about herd immunity?

Oh, I heard about this in science class. Isn't herd immunity when so many people have gotten vaccinated that it's hard for diseases to spread?

- **No vaccine**: Most exposed people get sick.
- **With vaccine**: Few exposed people get sick.

Diagram: Exposed to disease, vaccinated vs. not vaccinated.
That's right, Jazzy! Herd immunity keeps viruses like the coronavirus from spreading. But getting enough people vaccinated will take time.

Even when a lot of people are vaccinated, COVID-19 won't be completely gone. But, it'll be much less common.
When I was a kid, I remember bringing measles home from school. All my siblings and I got sick, but now hardly anyone gets measles because of vaccines.

Yeah, I've never heard of anyone I know getting measles. I guess that's why it's so important for everyone to get the vaccine.
My siblings and I all recovered from measles, but a lot of people died from it before the vaccine!

I guess COVID-19 is similar! I know some people who got it and didn't get very sick, but one of my friends was admitted to the hospital when he got it.

How scary!
I don't want to risk getting COVID-19 like my friend did, but the vaccine still makes me a bit nervous.

People have worried about new vaccines in the past too. Remember when Elvis got the polio vaccine to show people it was safe?

I do! And I saw Dr. Cook get the COVID-19 vaccine on the local TV news.
Oh, that reminds me, my favorite rapper posted a video of herself getting the vaccine. Here she is!

She's inspiring her fans to get vaccinated... like Elvis did back in your day!
I understand you've had some worries, Miss Georgia, but overall, vaccines are safe.

It's true that all medical treatments have risk. But the risk of any bad reaction to the COVID-19 vaccine is very small.

And, the benefit of not getting sick with COVID-19 is much greater than that small risk.
Once everyone is vaccinated, COVID-19 will be like measles and show up way less often.

I can't wait!

Me either! But Meanwhile, let's keep up with masks, distancing, and washing hands.
It’s a lot easier to keep doing these things knowing the end is in sight. I’ll definitely get vaccinated!

That way, we can spend birthdays and everything else together next year.

We all look forward to that!

We sure do!
For life to get back to normal, we need the protection from COVID-19 that a vaccine offers.

Some people are scared to get COVID-19 vaccines. They worry that the vaccines were made too quickly or that mRNA vaccines are not safe.

Some people think it’s good enough if other people get the vaccine and they don’t. But for the population as a whole to be protected, almost everyone needs to have a COVID-19 vaccine.
1. The COVID-19 vaccines work and are safe. Getting the vaccine as soon as it’s available to you protects you and the people around you.

2. Continuing to wear masks and social distance until almost everyone has a vaccine will slow down the spread of the coronavirus.

3. Help your immune system protect you from disease. Sleeping enough, eating colorful fruits and vegetables, and exercising boost your immune system.
We Engage 4 Health is supported by the Science Education Partnership Award (SEPA) Program of the National Institute of General Medical Sciences (NIGMS) award number R25GM129808. Contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH.

For more information about We Engage 4 Health, visit our website at WE4H.LIFE. For more information about the SEPA program, visit NIHSEPA.ORG.

Content is provided for informational purposes only, is believed to be current and accurate at the time of posting, and is not intended as, and should not be construed to be, medical or consulting advice.